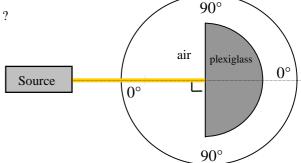
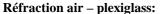
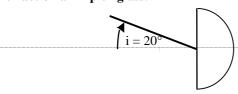
REFRACTION – LOIS DE DESCARTES

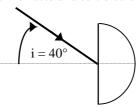
OBJECTIFS: établir expérimentalement la loi de Descartes à la réfraction.


I LE PHENOMENE DE REFRACTION

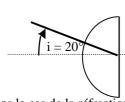
1) Mise en évidence

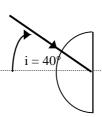

- Un faisceau laser est envoyé obliquement à la surface de l'eau contenue dans un récipient en verre.
- a) Légender le schéma ci-contre avec les mots suivants:
- dioptre air eau, air, eau, rayon incident, rayon réfracté.
- i (angle incident), r (angle réfracté), normale.
- b) Comment se propage la lumière laser dans l'eau et dans l'air ?
- c) Comment est modifiée la direction du faiseceau incident à la traversée du dioptre air eau ?
- d) Définir alors le phénomène de réfraction.
- e) Par rapport à quelle droite particulière sont repérés les angles i et r?

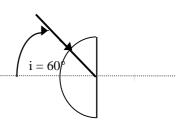

2) Etude qualitative


• **Principe**: un demi-cylindre de plexiglass est posé sur un disque gradué pouvant tourner autour de son axe. Un faisceau lumineux arrive au centre de la surface plane du dioptre air - plexiglass (demi-cylindre). Il subit alors une réflexion (peu visible) et une réfraction dans le plexiglass. Les graduations angulaires du disque permettent de mesurer les angles i et r.

• Pour chacun des schémas ci-dessous et construire le rayon réfracté à la sortie du dioptre:







Réfraction plexiglass - air:

- a) Comparer i et r dans le cas de la réfraction air plexiglass.
- b) Comparer i et r dans le cas de la réfraction plexiglass air.
- c) Dans la réfraction plexiglass air déterminer expérimentalement la valeur limite de l'angle d'incidence notée i_{ℓ} à partir de laquelle il n'y a plus de réfraction mais seulement réflexion du fiasceau incident.

II LOI DE DESCARTES A LA REFRACTION DU DIOPTRE AIR - PLEXIGLASS

• Faire tourner le disque optique autour de son axe en faisant varier i de 10° en 10° puis remplir le tableau. Régler la calculatrice en degré et conserver 3 chiffres significatifs pour les sinus.

i (°)	0	10	20	30	40	50	60	70	80
r (°)									
sin (i)									
sin (r)									

1) Tracer le graphe $\sin(i) = f(\sin(r))$ sur une demi-feuille de papier millimétré.

Echelles: en abscisse, $\sin(r)$: 1 cm \leftrightarrow 0,100

- en ordonnée, sin (i): $1 \text{ cm} \leftrightarrow 0.100$
- 2) Quelle est l'allure du graphe obtenu ? Que peut-on alors dire de sin (i) et de sin (r) ? .
- 3) Calculer le coefficient directeur noté "a" de la droite en choisissant deux points particuliers. Détailler le calcul.
- 4) En 1637, Descartes propose une loi sur les sinus: \sin (i) = $n.\sin$ (r) avec n, nombre sans dimension appelé indice de réfraction. A partir de la question 3) déterminer la valeur de n, indice de réfraction du plexiglas.